Session Date: January 20, 2026 Analysis Period: December 9, 2025 - January 20, 2026 Data Source: ~/.claude/stats-cache.json, git history


Executive Summary

  • Total Cost: $3,674.37 over 42 active days
  • Total Sessions: 306 sessions
  • Total Messages: 110,288 messages
  • Key Finding: 69% reduction in cost-per-message from December to January
  • Implementation: Added context window tracking to session-start hooks

1. January 2026 Daily Activity

DateMessagesSessionsTool CallsMsgs/Session
Jan 31,5693469523
Jan 8100134100
Jan 106,627311,891214
Jan 119,022222,629410
Jan 123011030
Jan 145013134167
Jan 167,543161,049471
Jan 1722,124161,4201,383
Jan 186,01911573547
Jan 1919,123832,902230
Jan 208,721311,352281

January Token Usage by Model

DateOpus 4.5Haiku 4.5Sonnet 4.5Total
Jan 367,3760067,376
Jan 820,3770020,377
Jan 10590,83112,0230602,854
Jan 111,315,43912,90147,3791,375,719
Jan 125,207005,207
Jan 1429,7421,243030,985
Jan 16149,3891,598312151,299
Jan 1797,1842116,871104,266
Jan 1885,665320085,985
Jan 19497,3421,30249498,693
Jan 20180,74000180,740

January Weekly Comparison

PeriodMessagesSessionsTokensAvg Tokens/Session
Week 1 (Jan 1-7)1,569367,37622,459
Week 2 (Jan 8-14)16,280582,015,14234,744
Week 3 (Jan 15-20)63,5301571,020,9836,503

2. December 2025 Daily Activity

DateMessagesSessionsTool CallsMsgs/Session
Dec 91,8525651370
Dec 101,71410625171
Dec 111,5742572787
Dec 12127144127
Dec 149,572272,996355
Dec 165775159115
Dec 207571218757
Dec 21115135115
Dec 245,585141,714399
Dec 251,7747517253
Dec 26200250100
Dec 275,062131,401389

December Token Usage by Model

DateOpus 4.5Haiku 4.5Sonnet 4.5Total
Dec 9180,8387,6044,390192,832
Dec 10142,94512,5500155,495
Dec 11166,4719,5830176,054
Dec 1277,1160077,116
Dec 141,055,05722,84001,077,897
Dec 16146,0362,0110148,047
Dec 20107,68100107,681
Dec 218,470008,470
Dec 24823,44711,3480834,795
Dec 25301,1357,6890308,824
Dec 265,466005,466
Dec 27443,1405,8160448,956

3. Monthly Comparison: December vs January

Totals Comparison

MetricDecemberJanuaryChange
Messages28,90981,379+181%
Sessions88218+148%
Tool Calls8,98212,463+39%
Total Tokens3,541,6333,123,501-12%
Active Days1211-8%

Averages Comparison

MetricDecemberJanuaryChange
Msgs/Day2,4097,398+207%
Sessions/Day7.319.8+171%
Tools/Day7491,133+51%
Tokens/Day295,136283,955-4%
Tokens/Session40,24614,328-64%
Tokens/Message122.538.4-69%

Model Distribution

ModelDecemberJanuaryChange
Opus 4.53,457,802 (97.6%)3,039,292 (97.3%)-12%
Haiku 4.579,441 (2.2%)29,598 (0.9%)-63%
Sonnet 4.54,390 (0.1%)54,611 (1.7%)+1144%

4. Cost Analysis

API Pricing (per million tokens)

ModelInputOutputCache Read (0.1x)Cache Write (1.25x)
Opus 4.5$5.00$25.00$0.50$6.25
Sonnet 4.5$3.00$15.00$0.30$3.75
Haiku 4.5$1.00$5.00$0.10$1.25

All-Time Token Usage

ModelInputOutputCache ReadCache Write
Opus 4.52.76M3.74M3,806M256.2M
Sonnet 4.542.7K16.3K11.4M3.2M
Haiku 4.532.1K77.0K102.9M29.0M

Cost Breakdown by Model

Claude Opus 4.5

| Category | Tokens | Rate | Cost | |———-|——–|——|——| | Input | 2,755,560 | $5.00/M | $13.78 | | Output | 3,741,534 | $25.00/M | $93.54 | | Cache Read | 3,805,996,551 | $0.50/M | $1,903.00 | | Cache Write | 256,194,956 | $6.25/M | $1,601.22 | | Subtotal | | | $3,611.54 |

Claude Sonnet 4.5

| Category | Tokens | Rate | Cost | |———-|——–|——|——| | Input | 42,689 | $3.00/M | $0.13 | | Output | 16,312 | $15.00/M | $0.24 | | Cache Read | 11,362,461 | $0.30/M | $3.41 | | Cache Write | 3,240,361 | $3.75/M | $12.15 | | Subtotal | | | $15.93 |

Claude Haiku 4.5

| Category | Tokens | Rate | Cost | |———-|——–|——|——| | Input | 32,050 | $1.00/M | $0.03 | | Output | 76,989 | $5.00/M | $0.38 | | Cache Read | 102,914,527 | $0.10/M | $10.29 | | Cache Write | 28,960,773 | $1.25/M | $36.20 | | Subtotal | | | $46.90 |

Total Cost Summary

ModelCost% of Total
Opus 4.5$3,611.5498.3%
Haiku 4.5$46.901.3%
Sonnet 4.5$15.930.4%
TOTAL$3,674.37100%

Cost by Category

CategoryCost% of Total
Cache Write$1,649.5744.9%
Cache Read$1,916.7052.2%
Output$94.162.6%
Input$13.940.4%

Monthly Cost Breakdown

PeriodToken ShareEstimated Cost
December 202553.1%$1,951.10
January 202646.9%$1,723.27
Total100%$3,674.37

Cost Efficiency Metrics

MetricDecemberJanuaryChange
Total Cost$1,951.10$1,723.27-12%
Daily Avg Cost$162.59$156.66-4%
Cost/Session$22.17$7.90-64%
Cost/Message$0.067$0.021-69%
Cost/Tool Call$0.217$0.138-36%

5. Spike Day Analysis

All Spike Days Comparison

DayTypeSessionsTokensTokens/SessionCommits
Dec 14Research271.08M39,9220
Dec 24Research14835K59,6280
Jan 11Research221.38M62,5330
Jan 17Implementation16104K6,51713
Jan 19Rapid iteration83499K6,00812

December 14 Analysis

The Numbers: | Metric | Dec 14 | Dec Avg | vs Avg | |——–|——–|———|——–| | Tokens | 1,077,897 | 295,136 | 3.7x | | Messages | 9,572 | 2,409 | 4.0x | | Sessions | 27 | 7.3 | 3.7x | | Tool Calls | 2,996 | 749 | 4.0x |

Cause: Research sprint for OpenTelemetry integration (shipped Dec 27)

December 24 Analysis

The Numbers: | Metric | Dec 24 | Dec Avg | vs Avg | |——–|——–|———|——–| | Tokens | 834,795 | 295,136 | 2.8x | | Messages | 5,585 | 2,409 | 2.3x | | Sessions | 14 | 7.3 | 1.9x | | Tool Calls | 1,714 | 749 | 2.3x |

Cause: Final research push before Dec 27 OTel implementation

January 11 Analysis

The Numbers: | Metric | Jan 11 | Average | vs Avg | |——–|——–|———|——–| | Tokens | 1,375,719 | 283,955 | 4.8x | | Messages | 9,022 | 7,398 | 1.2x | | Sessions | 22 | 19.8 | 1.1x | | Tool Calls | 2,629 | 1,133 | 2.3x |

Cause: Research for SigNoz integration (shipped Jan 16)

January 17 Analysis — Anomaly Day

The Numbers: | Metric | Jan 17 | Jan Avg | vs Avg | |——–|——–|———|——–| | Messages | 22,124 | 7,398 | 3.0x (HIGHEST) | | Tokens | 104,266 | 283,955 | 0.37x (LOW) | | Sessions | 16 | 19.8 | 0.8x | | Tool Calls | 1,420 | 1,133 | 1.3x |

Unique Pattern: Highest messages, lowest tokens = Implementation day (not research)

Efficiency: 4.7 tokens/message vs 152.5 on Jan 11 (32x more efficient)

January 19 Analysis — Session Explosion

The Numbers: | Metric | Jan 19 | Jan Avg | vs Avg | |——–|——–|———|——–| | Messages | 19,123 | 7,398 | 2.6x | | Sessions | 83 | 19.8 | 4.2x (RECORD) | | Tool Calls | 2,902 | 1,133 | 2.6x | | Tokens | 498,693 | 283,955 | 1.8x |

Cause: High-velocity shipping day with frequent context resets


6. Research vs Implementation Pattern

Token Efficiency by Activity Type

TypeExampleMessagesTokensTokens/Msg
ResearchJan 11, Dec 14MediumVery High100-150
ImplementationJan 17Very HighLow4-5

OTel Project Total (Dec 9 - Dec 28)

PhaseDatesTokens% of Project
Sprint 1Dec 9-161,826,32148%
BreakDec 17-23116,1513%
Sprint 2Dec 24-261,149,08530%
ShipDec 27-28723,26919%
Total 3,814,826100%

SigNoz Project Total (Jan 10 - Jan 19)

PhaseDatesTokensCommits
ResearchJan 10-111.98M0
QuietJan 12-1436K0
ImplementationJan 16151K6
PolishJan 17-19689K25

7. Context Utilization Patterns

Cache Statistics

ModelCache ReadCache WriteRead:Write Ratio
Opus 4.53,806M256M14.9:1
Haiku 4.5103M29M3.6:1
Sonnet 4.511M3.2M3.5:1

Estimated Context Per Session

PeriodSessionsEst. Context/Session
December88~1.5M tokens
January218~550K tokens
Change+148%-63%

Context Trend by Day

DaySessionsTokensEst. Avg Context/Session
Dec 14271.08M2.7M
Dec 2414835K4.0M
Jan 11221.38M4.2M
Jan 1716104K437K
Jan 1983499K398K
Jan 2031181K5.8K

8. Implementation: Context Tracking

New Files Created

hooks/lib/context-tracker.ts

  • Estimates tokens from transcript content (~0.25 tokens/char)
  • Records OpenTelemetry metrics
  • Maintains historical data in ~/.claude/context-history.json
  • Tracks daily averages for trend analysis

New Metrics (exported to SigNoz)

MetricDescription
session.context.sizeEstimated tokens at session start
session.context.utilizationContext window % used (of 200K)
session.startsSession start counter

New Trace Attributes

AttributeDescription
context.estimated_tokensToken estimate
context.utilization_percent% of 200K window
context.transcript_sizeRaw transcript bytes
context.message_countConversation turns
context.is_resumeWhether session was resumed

Visual Output Format

📊 Context: 45K tokens (22.5%)
   [████░░░░░░░░░░░░░░░░] 🟢

9. Key Insights

Efficiency Gains

  1. 3x more messages in January with fewer tokens = significant efficiency gain
  2. Tokens per message dropped 69%: 122→38 tokens
  3. Tokens per session dropped 64%: 40K→14K
  4. Cost per session dropped 64%: $22.17→$7.90

Usage Patterns

  1. Research days have high tokens, low commits
  2. Implementation days have high messages, low tokens
  3. More sessions = smaller contexts (deliberate management)
  4. Cache hit ratio of 14.9:1 indicates excellent context reuse

Cost Optimization

  1. Cache operations = 97% of cost
  2. Without caching, input would cost ~$19,600 (5.3x more expensive)
  3. Net cache benefit: ~$16,000 saved via cache reads

10. Recommendations

  1. Continue short session strategy — Week 3 showed 81% cost reduction per session
  2. Track context utilization — New hooks will provide visibility
  3. Monitor research spikes — 7x research:implementation token ratio is high
  4. Consider Sonnet for subagents — 11x increase shows good delegation

Report generated: January 20, 2026 Data period: December 9, 2025 - January 20, 2026 Total analysis cost: Included in Jan 20 session metrics